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Abstract 

The method of geometric quantization is applied to the symplectic space obtained by Marsden- 
Weinstein reduction of a cotangent bundle T*N. Specifically it is assumed that the symmetry 
[gauge] group acts freely on N so that N is a principal N-bundle over the assumed Riemannian 
manifold Q = N/H. The reduced phase space obtained is the same of that for a charged particle 

moving on Q in an external Yang-Mills gauge field which is given by a connection on N + Q. An 
explicit map is found from a subalgebra of the classical observables to the corresponding quantum 
operators. These operators are found to be the generators of a representation of the semi-direct 
product group. Aut N K C”( Q). A generalized Aharanov-Bohm effect is shown to be a natural 
consequence of the quantization procedure. In particular, the role of the connection in the quantum 
mechanical system is made clear. The quantization of the Hamiltonian is also considered. 

Additionally, our approach allows the related quantization procedures proposed by Mackey and 
by Isham to be fully understood. 

Keywords: Geometric quantization; Marsden-Weinstein reduction; Constrained systems; External gauge 
tields 
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1. Introduction 

Constrained mechanical systems make up an important category of classical dynamical 

systems. We consider the case where the constrained system is described by a symplectic 

manifold S (the “unconstrained” phase space of the system) together with a Lie group H, 
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which has a Hamiltonian action on S, and a corresponding equivariant momentum map 

JH : S -+ h* where h is the Lie algebra of H and h* is its dual. The constraints are 
given by JH = p for some fixed p E hf. Subject to certain technical assumptions, the 
reduced phase space of the system (i.e., the true phase space of the system in which the 
constraints are automatically satisfied) is then a quotient manifold of JH’ (p) and inherits 
a symplectic structure from S [35]; this particular method of identifying the reduced phase 
space is called Marsden-Weinstein reduction. A key point is that this quotient manifold is 
symplectomorphic to a symplectic leaf in the Poisson manifold S/H [32,2 11. The Poisson 
bracket on S drops to one on S/H (since H acts symplectically on S) and this defines the 
Poisson structure on S/H. 

We concentrate on the case where S is a cotangent bundle T* N. We assume that H acts 
freely on N so that we may consider (N, Q, H, nN+Q) to be a principal fibre bundle with 
total space N, base space Q = N/H, projection TN_, e, and where the Lie group H acts on 
the right of N. Thus H acts on S = T* N by cotangent lift and there is always an equivariant 
momentum map for this action [I]. The reduced phase space is then a symplectic leaf in 
(T* N)/H. For the special case N = H it is well known that the reduced phase space 
is just a coadjoint orbit in h*. Our results can be regarded as an extension of this special 
case to the general one. Our method centres around finding a rich group structure on the 
reduced phase space which is based upon the relatively natural construction of commuting 
automorphisms. 

One important physical interpretation, originally due to Sternberg, of this type of con- 
strained system, is well known in the context of a charged particle moving on Q in the 
presence of an external Yang-Mills field with gauge group H [46,48,36,14]. Specifically 
S/H = (T*N)/H is the “universal phase space” of the particle. There is a one-to-one 
correspondence between the symplectic leaves of S/H and the coadjoint orbits in h”. Each 
of the latter represents a different possible charge of the particle so that S/H, which is 
foliated by its symplectic leaves, is composed of the phase spaces corresponding to every 
possible charge. With respect to this example we often refer to Q as the configuration space 
and H as the gauge group. 

Naturally the construction of the quantum mechanical system corresponding to a con- 
strained mechanical system has aroused much interest. Recall that quantization tries to 
associate to each classical system (described by a symplectic manifold S) a Hilbert space 
‘FI of quantum states and a map from the space of classical observables (smooth functions 
on S) to the space of symmetric operators c3 on %. Each classical observable f E Coo(S) 
should correspond to an operator f^ E 0 such that: 

(Qi) the map f + f^ is linear (over Iw); 
(Qii) if f = lls, then f^ = lln, where ll denotes the identity operator; 

(Qiii) if (ft, f2) = f3 then [ft, fz] = iAh. 
Additionally, some sort of irreducibility condition is also imposed. When S = T*Q is a 
cotangent bundle the operators 4 and b corresponding to (9, p) E T* Q are required to act 
irreducibly whilst when S is a coadjoint orbit the map f + f^ must give an irreducible 
representation of the generators of the symmetry group. In order to meet this require- 
ment of irreducibility, restrictions are imposed, in all quantization schemes, on the class of 
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observables that can be quantized. However, for a general symplectic manifold there appears 
to be, in the literature, no definite statement of the irreducibility requirements. We shall find 
though, that our method associates with quantization a representation of a Lie group which 
is, in general, irreducible, thus meeting any reasonable irreducibility requirement. 

Much work [ 12,40,10,11,6] has been done on the quantization of the reduced phase spaces 
of constrained systems and of a particle in a gauge field, most notably by Landsman for the 
case of homogeneous configuration spaces [29] using induced representations and for the 
general case 130,271 using Rieffel’s notion of “strict deformation quantization” and Rieffel 
induction respectively. However, these approaches suffer from the inability, in general, to 
quantize classical observables which are unbounded. Of course, geometric quantization 
places a restriction on the observables which can be quantized. However, we can quantize 
certain unbounded observables, such as momentum and position, and this is superior to 
the other approaches because the physical observables which are of interest are usually 
unbounded. 

The method of geometric quantization has so far been restricted to comparing the quan- 
tization obtained by first solving the constraints (i.e., reduction) and then quantizing the 
reduced space or quantizing the extended phase space and then imposing the constraints 
at a quantum level. However, in the setting that we work in, it was found [ 121 that the 
two approaches were equivalent only if the reduced phase space was symplectomorphic 
to a cotangent bundle and thus the geometric quantization of the reduced phase space was 
restricted to this rather special case. The question of whether reduction and quantization 
commute for arbitrary quantizable symplectic spaces is discussed in [42]. For the case in 
hand of cotangent bundles it is shown that the two procedures do commute provided the 
“unconstrained” system is taken to be T*N x 0, where 0 c h* is the coadjoint orbit 
containing the point CL. (The reduced space arising from consideration of T*N x 0 is 
symplectomorphic to the original reduced space.) 

Another notable contribution is in the area of homogeneous configuration spaces Q. This 
study was initiated by Mackey [31] and was extended by Isham [20], who used a group- 
theoretic approach to identify a particular semi-direct product group G which acted on the 
phase space T*Q of the system. Quantization then corresponded to assigning quantum 
operators to be generators of an irreducible unitary representation of the group G. However, 
as in general, there is more than one such representation of this group, many different 
inequivalent quantum systems arise from the study of the same configuration spaces. We 
will see that these correspond to the geometric quantization of different symplectic leaves 
of (T*G)/H where G is a Lie group (H c G) so that G/H is the homogeneous space Q. 
(Note that T*Q c (T*G)/H.) Indeed, the underlying motivation for this paper was the 
anticipation of this result, which was based upon two previously known results. Firstly, it has 
been shown [34] that the symplectic leaves of (T*G)/H are symplectomorphic to certain 
coadjoint orbits in the dual of the Lie algebra of G. Whilst secondly, Rawnsley 141) has 
shown that the geometric quantization of these orbits leads to the induced representations 
upon which Mackey theory is based. 

One important feature of Isham’s approach was the use of a momentum map to relate the 
classical observables with their quantum operator counterparts. Specifically if G is a Lie 
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group, with Lie algebra .C(G), which acts on the symplectic manifold M and J : M + 
L(G)* is a corresponding equivariant momentum map then, given a representation n of 
G, a “quantizing map” Qh can be given which relates classical observables to quantum 
operators. Explicitly, 

Qd.b>) = A dn(A), (1.1) 

where .? : L(G) -+ Cm(M) is defined by (J(m), A) = (.?(A))(m) and dw is the derived 
Lie algebra representation, where we are following the convention that 

d;rr(A) = i krr(e’“) (1.2) 
t=O 

The general properties of a momentum map then ensure that condition (Qiii) is automatically 
satisfied. The subclass of observables that can be quantized by Qh is clearly (j(A): A E 
C(G)]. Clearly, this approach hinges on the ability to choose G and IT correctly. 

This paper uses the geometric quantization framework of Kostant and Souriau to give a 
complete quantization of the constrained mechanical system whose reduced phase space is 
[symplectomorphic to] a symplectic leaf in (T * N)/ H. In particular, our only assumptions 
are that the space N has a Riemannian structure with an H-invariant metric (so that Q 
inherits a metric from N) and that the gauge group H is a connected and compact Lie 
group. We are able to combine naturally the group-theoretic and geometric quantization 
approaches, finding on the way how each sheds light on the other. In particular, we are 
able to present our results in the language of representations so that the quantum operators 
are given as generators of a representation of a Lie group, together with a corresponding 
momentum map which explicitly links the quantum operators with their classical observable 
counterparts in the manner described above. Thus, no knowledge of geometric quantization 
is required in order to appreciate the results found. 

Our presentation relies very heavily on the combination of the symplectic formulation 
of constrained mechanical systems with the method of geometric quantization. Since no 
one source adequately presents both theories in detail and manner needed, a short review 
of both is given in Sections 2 and 3 respectively. In particular, Section 2.4 gives a new 
result regarding the action of the semi-direct product group G = Aut N P( Coo (Q) of fibre 
preserving diffeomorphisms of N and smooth functions on Q on the phase space of the 
reduced system. This group action has a corresponding momentum map and the idea is to 
quantize in the style of (1.1). Indeed Section 4 can be regarded essentially as justifying 
this choice of G and showing which representation rr of G is to be chosen in the right-hand 
side of (1.1). Section 4.7 explicitly compares our approach with that of Isham’s [20] for 
homogeneous spaces. 

Section 3 reviews very briefly the method of geometric quantization. Finally, Section 4 
forms the heart of the paper. Using geometric quantization the reduced phase space is 
quantized. We find that, using a particular polarization, the subclass of observables that can 
be quantized is the same as that predicted by use of the group 6 = Aut N D( C”( Q). We 
then show that the corresponding quantum operators are generators of a representation x of 
6, the choice of rr depending on which symplectic leaf of (T*N)/H we are quantizing 
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on. Along the way we find that the Aharanov-Bohm effect is a natural consequence of our 
quantization and also that the nonintegrable phase factor of Wu and Yang [5 l] appears in 
the analogous result for the case when the gauge group is non-Abelian. Using the results of 
[30] we are able to give a Hamiltonian for the quantum system which then completes the 
quantization of the constrained system. 

2. Constrained mechanical systems 

2.1. Dual pairs and momentum maps 

We start by reviewing the basic ideas of dual pairs and momentum maps which provide 
great insight into the theory of Marsden-Weinstein reduction. The main references for 
this subsection are Weinstein [49], Choquet-Bruhat and De Witt-Morette [7, Ch. 121 and 
Abraham and Marsden [ 11. Also see the article by Adams and Ratiu in [ 151 for a review of 
dual pairs in connection with the integrability of point vortex motion. 

A useful idea is the notion of a realisation of a Poisson manifold M. This is a symplectic 
manifold S together with a Poisson map .I : S -+ M. A Poisson map is one which preserves 
the Poisson bracket, i.e., 

(J*F, J*G), = J*{F, G], VF, G E COO(M). 

We are interested in the case when the fibres J-t (m), m E M, define a foliation Q, of S in 
such a way that S/0 is a manifold and so if rr : S + S/O is the canonical projection, the 
space rr*C?(S/@) is aLie subalgebraof Cm(S) andcoincides with J*P(M). Wedenote 
the functions constant on the leaves of @ by 3~ and the functions which Poisson commute 
with all elements of 30 by 3@1, i.e., symbolically (3@, 3@~) = 0. It can be shown that 
this defines a foliation @I of S and with the assumption that S/a’ is a manifold, the 3*1 
are functions constant on the leaves of @‘. We call 34, and 3@1 polar to each other. 

A dual pair is where we have two Poisson manifolds MI and M2 and a symplectic 
manifold S with Poisson maps Jt , J2 between S and each Mi 

and 3~, and 30~ are polar to each other. The dual pair is calledfull if Jt and J2 are both 
submersions. However, if Jt and 52 have constant rank then JI (S) and J2(S) are Poisson 

submanifolds and J2(S) g S 3 JI (S) is a full dual pair. Assuming this to be the case, 
then the key result is that we can define a bijection between the symplectic leaves of MI and 
M2 (assuming that JI and J2 have connected fibres). Specifically, if J,-‘(m) is connected, 
then Jz(J,’ (m)) is a symplectic leaf of M2. In general, J2( JT’ (m)) will be a union of 
[connected] symplectic leaves of M2. 

For the case where a Lie group G acts symplectically on [the left of3 a symplectic manifold 
S (i.e., the Poisson bracket is invariant under the action of G) such that G\S is a manifold 
we can often fmd a momentum map J such that we have the dual pair 
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81; c S < G\S, (2.1) 

where rrG is the projection map S -+ G\S and 81; is the dual of the Lie algebra of G with 
the “+” Lie-Poisson structure. This means we can find the symplectic leaves of G\S using 
the above result. 

Recall that the function groups corresponding to .I and rrG must be polar to each other. 
This gives us our first condition on J. Denote the infinitesimal generator of the left action 
of G on S by <, i.e., 

(W)f)(m) = %.fC,” m> 1 r=O’ 
x E g, m E s, f E P(S), 

where we are denoting the action of x E G on m E S by x . m. (Note that, if G acts on the 
right on S, then efx . m in (2.2) is replaced by m . erX and g* now has the “-” Lie-Poisson 
structure.) Now define j : g + Coo(S) to be the restriction of .I* from C”(g*) to g 
(regarding g c C”(g*), i.e., X(O) = (0, X) for X E g and 0 E g*). So explicitly 

j(X)(m) = (J(m), X). (2.3) 

Then the first condition is that j must satisfy 

If, j(X)1 = !Y(X)f Vf E Cco(S), VX E g. (2.4) 

Note that we define the Hamiltonian vector field [f of f E Coo(S) by tfg = (g, f} for 
g E C”(S), so that (2.4) can be written (j(X) = e(X). Secondly J must also be a Poisson 
map; this is achieved by the condition that J must be equivariant, i.e., 

J(x .m) = 77,,(x)~J(m). (2.5) 

Here n,,(x) E Ad:_, denotes the coadjoint action. This last condition implies that 

U(X), j(Y)] = j(]X, Yl), (2.6) 

i.e., j preserves the Lie algebra structure. With these two conditions it can be shown that 
we have a dual pair as described. 

Now, assuming that G is connected, the symplectic leaves of g* are coadjoint orbits. Also 
note that (2.5) implies that rrG(J-’ (n,,(g) . ,u)) = n’(J-‘(p)). Thus, assuming the fibres 
J-‘(F) are connected, the symplectic leaves of G\S can be written Pob = G\(J-‘(0,)) 
where 0, is a coadjoint orbit in g*. The symplectic form Qo on PO is given, e.g., [33], via 

j&Q = pr*Qo + J&uo+, (2.7) 

where j, : J-’ (0,) + S is the inclusion, Q is the symplectic form on S, pr : J-’ (0,) + 
Pop is the projection xc acting on J-‘(0,); and where JO = J/J-*(0,) : J-‘(0,) + 
0, and We+ is the symplectic form on the coadjoint orbit. 

There is an alternative expression for the symplectic leaves of S/G. If G, denotes the 
isotropy group of CL, i.e., 

G, = k E G: Ir,o(g). P = ~1, (2.8) 
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then the symplectic leaf Pop = rr’(J-l(p)) 2 G,\J-l(p) = PM. This process of 
identifying Pw or PO@ is called Marsden-Weinstein reduction. The symplectic structure 
.R, on Pw is given by ilf2 = ncf2,, where i, : J-‘(p) -+ Pw is the inclusion map and 
irlr : J-‘(p) + Pw is the projection map. 

There is an important general result regarding the actions of a group G on a manifold 
Q. Specifically the induced action of G on the cotangent bundle T* Q (by cotangent lift) is 
symplectic with respect to the canonical symplectic form a() = -dBu on T*Q. Here 00 is 
the canonical one-form defined by 

wo> u)j& = a/’ r*u)q Vu E TgJT*Q,, (2.9) 

where /lq E T; Q and rr : T* Q + Q is the canonical projection. An equivariant momentum 
map for the action of G on T* Q is given by J : T* Q -+ g* with 

(J(P,), X) = (&‘C(X)), X E g. (2.10) 

There is a slightly different approach, at least in the language used, to finding the sym- 
plectic leaves of G\S. In this terminology, e.g., [50], the submanifold J-t (p) c S is called 
apresymplectic manifold. It has a two-form CJ’ given by just restricting the symplectic form 
on S to J- ’ (p). The characteristic distribution of (T’ is 

K, = (X: ixo’ = 0) c T,(J-‘(p)) (2.11) 

provided the dimension of K, remains constant for all m E J-‘(p). It follows that K 
is integrable and if M = J-‘(p)/K is a manifold then cr’ projects onto a well defined 
symplectic structure ~7 on M. This new symplectic space (M, a) is called the reduction of 

(J_‘(P), a’). 
The link between the symplectic space M and the symplectic leaves J-‘(p)/G, found 

earlier, is that, in general, K = (G,)o, the identity component of G,. When G is compact 
or semi-simple, the isotropy group G, is connected [14] so K = G, in agreement with 
our earlier approach. For the special case S = T*G, each B E T,*G can be identified with 
the one-form hz/3 E T:G 2: g* where 1: is the pullback of the left action h,_~ = xy. This 
gives us the [left] parallelization 

T*G + G x g* 

B + (x3 $%L. (2.12) 

Let(d’),a = l,... , dc = dim G, be a basis of g” and define P(x) = h:_,d” so {0”(x)) 
form a basis for the left invariant one-forms on G. Any element /3 E T:G can be expanded 
as /I = p,@(x) and in the above parallelization this corresponds to #I + (x, pnda)L. 
Hence we can use the (pa] as coordinates on T,*G which are globally valid. For future 
reference, the canonical one-form in this coordinate system is 

80(x, P) = Pa@(X). (2.13) 

(Note that similarly there is a right parallelization of T*G 2 G x g* via /l + (x. ~~z/I)n 
where p denotes the right action of G on G.) 
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If G acts on the right of S = T*G then it follows from (2.10) that an equivariant 
momentum map is given by JR : T*G + g*_ with &(X, p)t = p. Clearly, J-‘(p) = 
G x (p) z G. Thus G can be regarded as a presymplectic manifold with K, = ( LV (x) : 
V E g,) where g, denotes the Lie algebra of G, and LA denotes the left invariant vector 
field on G generated by A E g, i.e., for f E P(G), 

d 
@Af)(X) = -f(xetA> 

dt 
. (2.14) 

t=o 

The reduction of G gives, as expected, the manifold G/G, 2 0, when (G,)o = G,. 

2.2. Mechanical H-systems 

We work in the setting of what Smale [44] calls a simple mechanical H-system. This 
means that we have a symplectic manifold T*N, together with a right action of H on N 
(H acts on T* N by cotangent lift), a Riemannian metric on N which is H-invariant and a 
Hamiltonian, Ho : T*N + R, of the form 

Ho(n, P) = ; II P II: +V(n), (2.15) 

where ]I . IIn is the norm induced on T,*N, and where V is an H-invariant potential. We 
assume that H acts freely on N so that we can regard N -+ Q = N/H as a principal fibre 
bundle as described in Section 1. Now Ho is H-invariant so Marsden-Weinstein reduction 
gives a reduced Hamiltonian system on the reduced space Pw (or alternatively on PO,). 
Marsden [33] has given an explicit realization of Pp as a submanifold of T*(N/ H,), where 
Hp is the isotropy group of H defined in (2.8). The essential part of this realization is what 
Marsden calls the mechanical connection. 

The locked inertia tensor O(n) : h + h* is defined at each II E N via 

(Vn)X, Y) = ((&Z(X), ,$l(Y))), (2.16) 

where 4(X) denotes the infinitesimal generator of the action of h on T*N. We identify 0 
with the metric on h. Let FL : TN -+ T*N be the Legendre transformation for the simple 
mechanical H-system (e.g., see [ 11). The mechanical connection cz : TN -+ h is defined 

by 

a(n, u) = O(n)-‘(J(FL(n, u))), (2.17) 

where J : T* N -+ h* is the momentum map for the action of H on T* N. As mentioned 
in the previous section, the momentum map J : T*N + h* for the [right] action of H on 
T* N is provided by means of (2.10). In our present notation, 

(J(P,), X) = (pn, c(X)), X E h*. (2.18) 

The term mechanical connection is used because a! defines a connection on the principal 
bundle N -+ N/H. The key construction, at least from our point of view, is the one-form 
(1~~ on N, defined by 

&(n), u) = (P, o(n, u)), (2.19) 
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i.e., op = p o o. This one-form is used to define what Marsden [33] calls the shifting map 

hor : T*N + J-‘(O) (2.20) 

B + B - aJ(B,. (2.21) 

Now up lies in J-’ (p), so, if we restrict the map hor to J-’ (p), and quotient by H,, , we 
have a map 

hor, : (K’(p))/H, + J-‘(0)/H, (2.22) 

induced by p -+ p - CZ~. Let JIL denote the momentum map for Hp c H (so JW = J / h,), 
then J-‘(0)/H, embedsin Ji’(O)/H, 2 T*(N/H,). Thus themaphor, embeds P,, into 
T* (N/ H,). The two-form da, on N drops to a two-form, denoted by BP, on the quotient 
N/ Hp. (This is because CZ~ is invariant under the action of Hp which is the isotropy group 
of p.) Let z denote the embedding of PW into T*(N/H,) via her,, then Kummer [26] has 
shown that the symplectic form on PLL is given by 

0 = I*aa - l*Jr*& (2.23) 

where rr : T*(N/H,) + N/H, is the canonical projection and au is the canonical sym- 
plectic form on T*(N/H,). Note that neither of the two terms on the right-hand side of 
(2.23) are, in general, symplectic. However, the sum of the two is. Locally, on a coordinate 
patch MA C N/H,, we can write (T = d@A. Let bA : MA -+ N be a (local) section, then 

@A = -2*&i - l*n*b;c+,, (2.24) 

where 00 is the globally defined canonical one-form on T* (N / H,). Of course, as we noted 
earlier, it is possible to regard PF 2 P 0, as a symplectic leaf in the Poisson manifold 
(T* N)/ H. This manifold inherits its Poisson structure from the one on T* N and a global 
formula for the Poisson bracket on the reduced space is given in [37]. However, the geometric 
quantization approach is much more suited to the case when the symplectic form rather than 
the Poisson bracket is known. 

Alternatively, in the Kaluza-Klein picture as generalized by Kemer [22], we could start 
with a metric on Q and a connection form u on N. As H is compact, a bi-invariant metric 
exists on H. The metric on N is induced by the connection. To be precise, a! defines an 
orthogonal decomposition T,, N = V,, CB Ha, n E N, where the horizontal subspace H,, is 
the kernel of CY,,. The metric on V, 2 h is the one induced from the bi-invariant metric 
on h, whilst the metric on Hn is the pullback of the metric on Q. The metric on N is thus 
H-invariant since phrHn = H,,h (which is one of the defining properties of a connection). 
Note that Marsden’s construction of the mechanical connection depends heavily on the 
given metric on N; whereas in the Kaluza-Klein picture a given connection is used to 
construct a metric on N. It is quite straightforward to show that if one starts with this latter 
case and calculates the mechanical connection then it is merely the connection one started 
with. 

For a particle in a Yang-Mills field, the relevance of the connection with regard to the 
symplectic leaves of (T * N)/ H is that, as noted by Weinstein [48], until it is chosen there is 
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no natural projection of (J-’ (0,))lZ-Z on T* Q; thus the variables conjugate to position on 
Q are inherently intertwined with the “internal” variables associated with 0,. Physically, 
this means that without a connection we cannot separate the particle’s external momentum 
from its own internal “position” and “momentum” which is associated with the motion on 
the coadjoint orbit 0,. 

2.3. The symplectic leaves of (T* N)/H 

Due to the large number of fibre bundles that appear in our discussion, we denote the 
projection map of a generic bundle C with base space X by nc+x. For the special case of 
a cotangent bundle T*X + X, we use nx for the projection map. 

To identify the symplectic leaves of (T* N)/H we use the result, due to Montgomery 
[36], that T*N 2: N# x h*, where N# denotes the pullback of the bundle N to a bundle 
over T* Q using the canonical projection nQ : T*Q + Q. The bundle N# is represented 
diagrammatically as 

N# + N 

& 4 (2.25) 

T*Q 2 Q. 

Further, the momentum map for the action of H, J : N# x h* + h*, is given by J (n, u) = u. 
We now briefly review these results. 

The first step is that, as noted by Guillemin and Stemberg [ 131, N# has a natural intrinsic 
realization as V” c T* N, the annihilator of the vertical bundle V c TN (V, c T,, N is 
the vertical subspace, i.e., it is the subspace tangent to the fibre at n E N). To see this, note 
that we can write N’ = T*Q xp N = {(n, p) E N x T*Q: r~+.Q(n) = rQ(p)), where 
nN#+T*Q[n, p]~ = p and the projection pr : N# + N is given by pr[n, p]~ = n. We 
can pull p back to an unique element K, = IT$+~P E T,*N, which is then an element of 

V,“. This correspondence between TG*,+eCnj Q and V,” is clearly bijective. 
Just as a connection form, (Y,, : T, N -+ h, defines a unique separation of T,, N into the 

vertical subspace and horizontal subspace, the dual of the connection form a,* : h* + T,* N 
defines a unique separation of T’N into N# and h*. Specifically, CI induces an H-equivariant 
isomorphism G : N# x h* + T*N by 

ii(Kn, u) = Kn + a;u, (2.26) 

where K,, E N# and we have identified N’ with V” c T*N. Recall that H acts on T*N 
by cotangent lift; the action of H on N# x h* is the one induced by a! and is given by 

P~(K,, v) = (Pi_,&, &,(h-‘) . u). Note that for In, PIQ E N#, ph[n, PIQ = [nh, PIQ. 
Also Cr induces a symplectic structure on N# x h* from the canonical one on T* N. 

The moment map J : N# x h* + h* for the action of H on N# x h* can be readily 
computed using the momentum map for the action of H on T* N given in (2.10). We have, 

forX E h*, (J(K~, u), X) = (K,, t(X)) + ( v, (Y, (6 (X))), where ,$ denotes the infinitesimal 
generator of the right action of H on N. Hence 
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-‘b-n~ u) = !J. (2.27) 

Using the results of Section 2.1, we can, using a, immediately identify the symplectic leaves 
of (T* N)IH with both PW and PO,, , where Pw = N#lHp and PO,, = N# x H 0,. 

2.4. A momentum map on the symplectic leaf Pov - identijcation qf classical observables 
to be quantized 

Recall that in Section 1 we motivated the approach of finding a group G which acts on the 
reduced phase space together with a corresponding momentum map. This allows a subclass 
of observables to be selected which we expect to quantize provided that we can find a 
suitable representation of G. Isham [20] has considered the special case where N is a Lie 
group G (with H c G) so that Q = G/H is homogeneous. In particular, he considered an 
action of G on the symplectic leaf T*(G/ H) c (T*G)/ H with a corresponding momentum 
map. We would like to generalize this approach for the present case where G is replaced by 
the general principal fibre bundle N and we consider any symplectic leaf in (T* N)/ H. The 
guiding principle is that the [left] action of G on the bundle G + G/H = Q commutes 
with the right action of H on G. Hence this action of G determines a subgroup of the group 
of automorphisms of G. For the general bundle N this group is denoted by Aut N and 
consists of all diffeomorphisms 4 of N which satisfy, for all h E H, 

@(n)h = @WI. 

Note that such a 4 determines a diffeomorphism of Q, 6 E Diff Q, via 

&r(n)) = rr(@(n)), 

(2.28) 

(2.29) 

where rr : N + Q is the bundle projection. In the general case there is no natural finite- 
dimensional subgroup of Aut N, thus we are forced to consider the whole group. 

We regard the Lie algebra of Diff N as the set of all complete vector fields on N. 
Unfortunately the commutator of two vector fields [Al. AZ] = -[Al, A~]LB, where the 
subscript LB denotes the Lie bracket of the two elements of the Lie algebra. Thus, in 
order to distinguish between the two brackets we will continue to use this subscript when 
considering Diff N (and Aut N). 

Drawing on Guillemin and Sternberg’s treatment [ 141 of the action of the semi-direct 
product group Diff N KP(N) on T*N we consider the subgroup Aut N KC”(Q) c 

Diff ND(C”O(N).ThegrouplawonAutND(P(Q)being($r, f’i).(&, f2) = (41 -42. .fr+ 
,f2 = 4; ’ ) and the Lie algebra is 

[(AI. f)), (A23 f2)1LB = ([AI, A~~LB, -A1f2 + A2f1). (2.30) 

Here we have identified L(C”( Q)) with C”(Q). Now Aut N K C”( Q) acts symplectically 
on T* N (because Diff N KC~(N) does) and the action is given by 

Wf,Bn = +-‘*(/%I) - (dr*.f14(,), /% E T,*N. (2.3 I ) 
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This choice of the group Aut N K C”( Q), whose action on T* N we are interested in, agrees 
with that of Landsman [30]. 

Guillemin and Sternberg [ 141 give the equivariant momentum map, J : T*N + 

L(Aut N K C”( Q))*, for this action as 

(J(P,), (A, f>) = (pn, A) + n*f(n>. (2.32) 

Now suppose J(pi,) = J(p,). Clearly n(n’) = n(n) and hence 12’ = nh for some h E H. 
We thus have (p;h , Anh) = (p,, A,). But L(Aut N) consists of all smooth vector fields 
on N that are H-invariant (e.g., see [ 14]), i.e., they satisfy ph*(A,) = Anh, for the flow of 
such a vector field consists of transformations belonging to Aut N. Hence pip:h = pn. 

Thus the fibres of J are generated by the right action of H. Further the action t defined in 
(2.3 1) commutes with the right action of H; this explains the reasoning behind choosing 
n*P(Q) rather than P(N). Thus r drops to an action 5 on (T*N)/H. 

In passing, we note that there is a relation between the momentum map J and the dual 
pairs of Section 2.1. Specifically, let JR be the momentum map for the right action of H as 
given in (2.18). We know from Section 2.1 that we have the dual pair 

h* z T*N 2t (T*N)/H. (2.33) 

Now note that J(T* N) is finite dimensional. Further, using (2.32), we can identify J(T* N) 
withM = ((/3, q) E T*N x Q: r~*iy+Q(p) = q} whereq E Q isregardedasanelement 
of C(C”(Q))* via (q, f) = f(q) for f E C(C”(Q)) 2 C”(Q). The elements of the 
space n*Cm((T*N)/H) of functions on T*N are constant on the fibres of J and hence 
this space coincides with the space J*t?(M). Thus, we have the full dual pair 

h* 3 T*N -: J(T*N) c C(Aut NKC?(Q))*. (2.34) 

We then note that J induces a symplectic diffeomorphism .ifi which maps the symplectic leaf 

p% = (Ji’(O,>)/H c (T*N)/Htoasymplecticleafin J(T*N) c L(Aut NKP’(Q))* 
Furthermore, the map jb is a momentum map for the action 5 on (T* N)/H. 

We have thus achieved our goal and we can now write down the classical observables 
we expect to be able to quantize. These are given by { &(A, f) : A E C(Aut N), f E 
C”(Q)) where jP : C(Aut NKP’(Q)) + C”(Pc+,) is given by (j,(A, f)>[p,J = 
(.f,[p,l, (A, f)) with [p,] E PO,, cf. (2.3). Recalling that Pop = N# XH O,, we then 
have for p,, = (b,,, II) E N# x c3,, using (2.26) 

Lf,[~nl, (A, f)) = ML + a,*~, A) + n*f(n). (2.35) 

Lets be a local section of the bundle N + Q. This allows us to choose a specific element 
in each of the equivalence classes N# x H 0,, so that 

(&(A, f))]Bs(y,~ ~IH = (A(q), A) + (~7 as(,)(A)) + f(s). (2.36) 

This expression simplifies if we use local coordinates. Now N#/H = T*Q, and locally 
Pow is like (N#/H) x 0,. Thus, let (h’ , . , hdH, qdH+‘, . . , qdN) be local coordinates on 
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N,where(qdH+‘,... , qdN) are coordinates on Q and (h ’ , . . . hdH) are coordinates on the 
fibreH.Letpd,+‘,..., pdN be the corresponding components of covectors on T* Q. Then 
wecanlabelapoint[~s~q~,~]~inN~x~C3,by(qd~~’.....qdN,p~H+~,....p~N,u).So 
we can write U,(~)(A) = X(qdH+‘, . . . , qdN) where X E h, together with (~TNL,~*A)~ = 
uy (qdH+‘, . . ) qdN)(a/aqy) where y = dH + 1,. . . , dN. Thus, setting Bs(y’ = TI;_~~ 
with p = p,, dqy, we have 

&(A, f)]&S,> UIH = uY(qdH+‘, . . . , qdN)py + (u, X(qdH+‘, . . . , qd”)) 

+ f(qde+‘,...,qdN). (2.37) 

This gives the classical observables which we expect to quantize 

2.4. I. The reduced Hamiltonian 
The Hamiltonian HO on T* N drops to a reduced Hamiltonian on the symplectic leaves 

of (T* N)/H. In particular, when a symplectic leaf is identified with PO,, , the reduced 
Hamiltonian HoU is given by [33] 

He+,@. P. u) = ill P II* +;(u. k(q))u) + V(s(q)), (2.38) 

where (q, p. u) labels locally a point in N# x H O,, as above. Denote by A, the element of 
C(Aut N) such that XN+Q,A y = (6’/6’qY) anda = 0. Then jW(AY, O)[Bs(y), v]H = 
pr. Similarlydenoteby AI theelementofC(Aut N) such that ~N_,Q*A~ = Oanda!(A,) = 
T/ where {TJ: J = 1, . . ..dH] isabasisforh.Hence ~L,(A,.O)[&cy,, U]H = (u, Tl). We 
can then write the reduced Hamiltonian as 

H% 1 = 2g “t&4,, O).&(A~. 0) + z ‘O’J.f,(A,, O)&(AJ. 0) + .&(O, &)). (2.39) 

Here Vo E F(Q) is such that rrc-, Q VO = V while (gab} and (0,~ ) are the metrics on Q 

and h respectively (g,ggbv = S,‘, O’KO~~ = 65). 

3. Geometric quantization 

We give a brief outline of the main procedures of geometric quantization. The reader is 
referred to Woodhouse [50], Sniatycki [45] or Puta [40] for comprehensive expositions. 

3. I. Prequantization and polarizations 

Prequantization is the process of tinding the Hilbert space IFI described in Section I ^ 
together with the map f + f which links classical observables with their counterpart 
quantum operators. A complex Hermitian line bundle B over the symplectic space M is 
introduced along with a connection V on B with curvature A-la, where 0 is the symplectic 
form on M. The bundle B is called the prequantum line bundle. An inner product ( , ) on 
f(B) (the sections of B) is given by 
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(SlY s2) = 
s 

h, S2W, (3.1) 

M 

where dim M = 2n. We restrict ‘FI to be the space of square-integrable sections. Each 
observable, f E C?(M), corresponds to the operator f^, where 

fs = -iAVc/s + fs, (3.2) 

and tf is the Hamiltonian vector field associated to f. This ensures that conditions (Qi)- 
(Qiii) of Section 1 hold. If tf is complete then f^ is essentially self-adjoint (on a suitable 
domain). 

Associated to each observable f is a vector field Vf on B characterized by 

EB-MVf = cff; 

A@, vf) = A(& vf) = -fOne+&,. 
(3.3) 

Here 6 is the connection one-form on the prequantum bundle B and 6 is its complex 
conjugate. Let pt denote the flow of ef, and & the flow of Vf. For a section s E T(B) a 
linear “pullback” action i$ : f(B) + f(B) can be defined by 

&(&(m)) = s(Pt(m)). 

Then, br is related to the quantum operator f^ via 

(3.4) 

dbt 

df txo 
= iA_‘!. (3.5) 

For a given symplectic manifold, a prequantum bundle does not always exist. This leads 
to what are called quantization or integrality conditions which determine if and when a 
prequantum bundle exists. Such conditions are usually formulated as a requirement on an 
integral of the symplectic form or in terms of de Rham cohomology classes. 

The next step in geometric quantization, once the prequantum bundle has been found, is 
to construct apolarization of the symplectic manifold. Then the Hilbert space IH is replaced 
by sections which are parallel along the polarization. Such sections are called polarized 
sections. The class of observables that can be quantized is then restricted to those for which 
the flow of the corresponding Hamiltonian vector field preserves the polarization. When the 
polarization contains real directions the step of restricting attention to the polarized sections 
necessitates a change in the inner product on ‘H and acorresponding alteration of the operator 
jcorresponding to an observable f. Our approach, as will be seen in Section 4.3, is to utilize 
the well known approach of using half-densities (e.g. see Simms and Woodhouse [43] or Puta 
[40]). We have avoided using the so-called half-form correction to geometric quantization 
(e.g. see Blattner [5,50,40]) because, firstly, for the coadjoint orbits of compact H there is 
no problem in constructing an inner product for the quantization and also the metaplectic 
correction arising out of half-form quantization has the somewhat perverse effect of shifting 
the value of the highest weight associated with a representation. Secondly, for the reduced 
cotangent bundle, there is a very natural inner product arising by simply integrating over 
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N/H, and also, as we were only concerned with quantizing functions linear in momentum 
(i.e., the generators of the canonical group), we are not interested in pairing wave functions 
arising from different polarizations. 

3.2. Quantization on coadjoint orbits 

Much has been written on the subject of geometric quantization on coadjoint orbits; e.g., 
see Kostant [25], Woodhouse [50] and Baston and Eastwood 141. We briefly outline the 
main steps. 

Let H be a compact connected Lie group with Lie algebra h; let I_L E h* and let 0, c h: 
denote the coadjoint orbit of p. Recall, that in Section 2.1, we saw that we could regard H 
as a presymplectic manifold. Also, we noted that for compact H (assumed here) H,,. the 
isotropy group of ,u, is connected; then the reduction of H by the left action of H,, gives 
H,\ H 2 CT,, c h?. The symplectic 2-form wO- on Hp \ H is given by il*wO = w,’ 

where ~7 : H + H,\H is the projection and wP is the restriction of the canonical 2-form 
on T* H to H x (bu) z H where we are working with the right trivialization of T* H, Thus. 
from (2.13), ocL = -de, where 8, (h) = pi_, p. 

Having detailed the symplectic manifold (H, \ H, COO-). the next step is to construct the 
prequantum bundle. Drawing on Woodhouse [50], Kostant’s formulation of the integrality 
condition on 00~ can be expressed as the requirement that -iA-‘/l should be the gradient 
at e of a homomorphism xP : H,, -+ U, where U is the circle group. 

The prequantum line bundle B is given by B = H XH/~ @. i.e., H x C modulo the 
equivalence relation (h, z) - (h,h, Liz) for h E H. h,, E Hw. This bundle has 
a connection whose curvature is A-‘wom. The connection can be either considered in 
the light of [50] or in the following manner. The principal bundle H --+ H,, \ H has the 
canonical H-invariant (under right action) connection (e.g., see 1231); by the assumption 
on the integrality of p, there is a representation of Hp into U( 1). Under the derivative of 
this representation, the canonical connection becomes a connection on B’ with curvature 
fi-‘wo~. 

We can identify the sections of B with functions C#J : H + C satisfying 

4(h,h) = Xp(h,,)@(h). 

There is an induced representation, ;TT~~ of H. on these functions defined by 

($(0#Nz) = 4(hh’). 

An inner product is given by 

+$l*$J2) = 
s 

d([hlH,)(h(h). +2(b))~. (3.8) 

H,JH 

We only require two more facts concerning the quantization on coadjoint orbits. The first 
of these is that there is a positive H-invariant polarization on H,\H. This is a standard 
result, e.g. see Woodhouse [50, pp. lO2-1051. The term H-invariance means that for each 
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[sl E H,\H we have ~h*f’~,, - u - P” ,sIht where H acts naturally on the right of Hw \ H. The 
existence of a positive Kahler polarization means that we can take the Hilbert space 3-10 for 
the quantization of (3, to be the space of square-integrable sections of the prequantum line 
bundle B -+ 0,. Note also the fact that H is compact means that tie is finite-dimensional. 

The second fact we require is that the representation rrP of H acting on the polarized 
sections of B is irreducible. This has been proved by Kostant [25]. The techniques involved 
(which centre around the use of the Borel-Weil theorem) do not play any part in the re- 
mainder of the paper and we will omit the details. It suffices to mention that by choosing 
an appropriate value of k, all finite irreducible unitary representations of H are obtained 
in this way. (See Woodhouse [50, pp. 1761771 for a discussion on the value of ~1 which 
generates a given representation.) 

4. Geometric quantization of the symplectic leaves of ( T * N) / H 

Recall that the reduced phase space of our constrained mechanical system can be identified 
with a symplectic leaf of (T * N)/ H. We now apply the technique of geometric quantization 
to these symplectic spaces. 

4.1. The prequantum line bundle B -+ Pp 

We require a (complex) hermitian line bundle B -+ Pw and a connection V on B 
with curvature A-la, with c given in (2.23). In particular, we saw in Section 2.2 that the 
symplectic form on P@ was built from the 2-form #11* defined on N/H,, and the canonical 
2-form on T*( N/ H@). Thus, we aim to find a line bundle B’ over N/ Hk and a connection 
on B’ with curvature -ft-‘/IP. We can pullback B’ by rr to form K*B’ + T*(N/H,), 
where rr is the same as in (2.23). The tensor product bundle formed from n * B’ and the trivial 
bundle Bo = T*(N/H,) x @ will yield a line bundle, Bt = r*B’ ~3 Bo, with curvature 
the sum of the curvatures of TC*B’ and Bo. (The simple expression for the curvature is a 
consequence of the additivity of the Chern character under the formation of tensor product 
bundles.) Now Bo admits a connection with curvature A-‘ao, thus, by considering (2.23), 
B = l* B1 will be a line bundle over Pw with the desired connection, where I is defined just 
before (2.23). 

The key point in constructing the line bundle B’ + N/ Hw is that CY defines a connection 
cr’ on N + N/H, via (Y’ = pro a where pr : h + h, is the projection relative to the 
metric on H. A representation xF of HU into U( 1) then allows us to define the associated 
line bundle B’ = N XH~ @ (where (n, Z) - (nh,, xF(h;‘)z) for h, E H,) with a 
corresponding connection. Of course there is a restriction on xCL if B’ is to have the desired 
connection. Interestingly, the condition on xP is the same as Kostant’s formulation of the 
integrality condition for the quantization of coadjoint orbits described in Section 3.2, i.e., 
-9-l F should be the gradient ate of a homomorphism xP : HcL + U where T is the circle 
group. To see this, note that xcl defines a representation of HP into U( 1) and its derivative 
defines a representation XL : h, + C which is given by x;(A) = -iA-’ (/.L, A). Under this 
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derivative the connection a’ gives a connection on the associated bundle B’ with curvature 
-A-’ fi,, where pl* denotes the two-from da, dropped to Nl Hp. Specifically, let A be the 
local expression for o’, then from the definition of a covariant derivative 

Vx(+‘s) = (X(e) + xj,(A(X))+)s, X E T(T(NIH,,)). (4.1) 

Here, s denotes the unit section and Q is a complex valued function. But xJ,(A(X)) = 

-iA-‘(A,,, X) where A, = (p, A). Hence 

VX(+S) = (X($) - iA-‘(A,, X)$).s, (4.2) 

so A, determines a connection with curvature -h-‘dA, = -h-‘/3,. For future reference 
we note that we can identify sections of B’ -+ N/H,, with functions y : N + @ such that 

y(nh,,) = x,&‘)v(~) Vh, E Hp. (4.3) 

For completeness we relate our approach to that of Woodhouse 150, Proposition 8.4.91 for 
the construction of the prequantum line bundle for the reduction of a symplectic manifold. 
Specifically, in our present notation, Woodhouse defines the line bundle to be N x C 
quotiented by the equivalence relation (n I, ZI) - (nz. ~2) if rr(nt) = n(n~) and ;? = 
-1 exp(-ih-’ Jr,’ or,). Here n : N + N/H, is the projection map and the precise path 
of the integral does not matter since it supposed that aI1 satisfies the integrality condition 

(]/2nh) JY ap E Z whenever y is a closed curve in a fibre of N + N/H,. (Note that 
Woodhouse’s construction does not require the 2-form da, to be symplectic.) 

From the defining properties of a connection, it immediately follows that, for A E h,,. 
(a~~, t(A)) = (p, A) and, additionally using the HP invariance of F, ~;,,a, = a,1, where 
h,, E H,. Considering the equivalence relation defined above, clearly nz = n I h,, for some 
h,, E H,,. Thus. for h,, = e*, where A E h,, we have 

= exp(;(p, A)). (4.4) 

Recall that HP is connected (see Section 2. I); hence we can define xrc : HP + C by 

(4.5) 

Note that the right-hand side of (4.5) is independent of n and so x@ is well defined. Thus, 
the integrality condition is equivalent to xv being a single valued function on H,. Further. 

xp(h,,e’*) = xfi(h,)xu(e’*), (4.6) 

and hence that x@(h,hL) = ~~(h,)x~(h~) for all hl, h, E Hp. Now, by noting that 

(dxfi, e(A))= -ih-‘x@(h,)(w. A), we see that xI1 is a homomorphism xlr : H,, + T 
whose gradient at e is -ih-‘p. Reversing the argument, it can be seen that the converse 
holds. Thus we find the same condition on xi1 as before. 
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Note that, given CX, our construction defines a unique line bundle (B’, V). This is in 
contrast with the usual situation in geometric quantization because there the symplectic 
2-form (T is the starting point and this does not define a unique one-form 8 such that dC3 = 
a; the construction of the line bundle uses the l-form 8, and thus this process does not, in 
general, give a unique bundle unless the symplectic space is simply connected (e.g., see 
[50]). Our approach avoids this problem because we start with oW rather than PK. 

Recalling the comments made in the opening paragraph of this section we have now 
proved: 

Theorem 4.1. Let BO be the trivial bundle T*(N/H,) x @ with a connection determined 
by the local connection form -A-’ 00, where 00 is the globally dejned canonical one-form 
on T * (N/ HP). Then the prequantum line bundle B + PW is given by I * (n * B’ @ Bo) where 
75 : T * (N/ HP) -+ N / HW is the canonical projection and B’ = N x H@ @ is the line bundle 
given above. 

For clarity and for future reference we note that the bundle B has local connection one- 
forms -iA-t(r*& + z*rr*y*~J on n-l (M), M c N/H,, where y : M + N is a local 
section. 

If we use principal bundles rather than their associated vector bundles, the trivialization 
T*N 2: N’ x h* allows more explicit forms for the various bundles just described to be 
given. The key point is to realize that the map hor defined in (2.21) is no more than the shift 
J-‘(p) 2: N# x (p) -+ N#. Also, by considering rrilHU N to be the annihilator of the 

vertical bundle of N + N/H,, we see that nilH N 2 N# x n*, where n* c h* is defined 
to be the annihilator of h, c h. Then, the pullbick bundles of N -+ N/H, are given by 
the following diagram. 

i*n;lHu N 2: N# + ?T$IH,NzN#xn’ -+ N 

4 J J (4.7) 

P@ 2: N#/H@ & T*(N/H,) 2 N# xHF n* ““9 N/H, 

The bundle lfn,CIHP B’ is given by N# XH~ @. (The prequantum bundle B has the same 

structure but the connection is not the one induced from B’.) 

4. I. 1. The Aharanov-Bohm effect 
Briefly [2,50,39], Aharanov and Bohm considered the case of a particle with charge e 

moving in the region outside an [infinitely] long cylinder, so that the configuration space 
Q of the system is no longer simply connected. Inside the cylinder there is a nonvanishing 
magnetic field; even if the magnetic field in Q vanishes, there is no gauge in which the 
magnetic vector potential A vanishes in Q. It is found that the potential influences the 
motion of the particle, in that the phase change of the wave function of the particle around 
a closed loop surrounding the cylinder is not zero, but is given by 

exp(i$d,dq’). (4.8) 
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The Aharanov-Bohm effect in the context of geometric quantization is well understood 
[ 17,161. We now quickly show how our approach reproduces the expected results. 

The phenomena of electromagnetic fields is described by a U( 1) gauge theory. Thus we 
have H = U( 1) and hence HP = U( 1) also. A magnetic vector potential A corresponds to 
a connection (Y on the bundle N -+ Q = N/H (i.e., A is the local form on Q for a). Let 
y : [0, 1] + N/H, = N/H be a closed loop. Denote by y the horizontal lift of y to N 
with respect to the connection a’. (Note that (Y’ = cx here since H, = H.) Define h,, E H,, 

by 

Y(l) = F(O)&, (4.9) 

then we have, by a direct consequence of the construction of v, 

h, =exp(-fR,dqY). (4.10) 

Now the phase change in $, a section of the bundle B’, on going round the loop y by 
parallel transport is just xIL(hP). From (4.5) and (4.4) we have immediately 

(4.11) 

where we have identified ,C(U(l)) with R. This agrees with (4.8) since 0, = (,Y} E h* is 
identified with the charge e of the particle. Hence our construction automuticalZy gives the 
physically correct choice of the prequantum line bundle. At this stage it is not clear how this 
generalizes to non-Abelian gauge groups. We will return to this at the end of Section 4.4. 

4.2. A polarization for Pfi 

Recall that we may consider Pp z PO,, = N# x H 0,. Now, we saw that, in Section 3.2, 
the coadjoint orbit 0, 2 H,\H has a natural H-invariant positive IGhler polarization 
P”. (The H-invariance of the polarization means that for each [s] E H,\H, we have 
,~h* P,: = P,s?lh, where H acts naturally on the right of H,\H.) 

For a cotangent bundle T* Q + Q, a natural polarization is given by the complexified 
vertical subspace at each u E T* Q [50], i.e., the complexified subspace of T,,(T* Q) which 
is tangent to the fibre. (This is called the vertical polarization.) In a similar manner, we 
may define an integrable complex distribution PO (a sub-bundle of the complexified tangent 
bundle) on the bundle N# -_, N simply by taking the complexified subspace of the tangent 
space which is tangent to the fibre. The fibre of the bundle N’ -+ N at n E N corresponds to 
V,“, the annihilator of the vertical subspace V,,. Now ph* V, = V&, so that pl_, V,” = V,$. 
Hence, the distribution PO is invariant under the right action of H. 

The direct sum of the polarization P” on 0, and the distribution PO on N# gives a 
new H-invariant distribution P’ on N# x 0,. The projection of P’ onto N# x H 0, is the 
distribution given by 

P, = pr*PL, (4.11) 
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where pr : N# x 0, + N# x H 0, is the projective map and u is any element of pr-’ (m). 
The precise choice of u is irrelevant since both P” and PO are invariant under the action 
of H. For suppose ut, u2 E pr-‘(m) then ~(1 = u2 . h for some h E H. By H-invariance, 

pr*p& = PrdJh*P,i2 = pr, P& as required. 

Theorem 4.2. The distribution P is a polarization for PO,, . 

Proo$ Firstly, P and P + p are involutory since the push-forward map pr, preserves 
commutators. Further, by construction we see that P is smooth and also P,,, fl pm = 
pr,(Pu $ (0)). Thus Pm n pm is of constant dimension. We finally need to show that P is 
maximally isotropic. Clearly P has the right dimension since dim P = dim N - dim h* + 
$ dim 0, whilst dim N# x H 0, = 2 dim N - dim h* - dim H + dim 0,. To show that 
P is isotropic we need the expression for the symplectic form on PO,, given in (2.7). Since 
we are using the trivialization T*N 2 N# x h*, R should be replaced by Cr*L? which is 
the induced symplectic form on N# x h* 2 T*N. We have 

Q,(Pm, Pm) = (j~cr*w(p:, p:, - cJ~wo>(p:~ p;> (4.12) 

= 0, (4.13) 

where to justify sZ(G,jo, PL, Gl*jo* PL) = 0, we consider local canonical coordinates 
(q’, pj} on T*N. Then, we see that &* j”, PL is spanned by (a/apj}, and thus the desired 
result. Hence P is maximally isotropic and is a polarization for PO, 2: Pp. 0 

4.3. Quantization 

Having found a polarization for PW, the standard approach in geometric quantization is 
to replace the pre-Hilbert space of smooth square-integrable sections of the prequantum 
line bundle B with the subspace of square-integrable polarized sections of B. The quantum 
operator corresponding to a classical observable is defined on the polarized sections of the 
prequantum line bundle B. However, these sections are not square-integrable on Pp. Thus, 
in a manner analogous to that described in [50], we alter the quantization process so that 
we integrate over Q rather than PW. 

Briefly, let rr : P@ -+ Q be the canonical projection and let AQ + Q denote the 
line bundle A”T@* Q. (Here A” V is the n-fold exterior power of a vector space V and 
n = dim Q.) Then, define KD = JT*AQ c ART@*PCL. The bundle AQ is trivial so KD is 
too. Thus, we can define 6~ = fin. We now replace B by BK = B @I 6~ and consider 
polarized sections of this bundle. In terms of the bundle E, we can view sections of the new 
bundle BK as sections of the bundle E @ ae + Q. Sections of this bundle are of the 
form S = sn where s E f(E) and n E r(fi,). The inner product for such sections is 

613 S2) = 
/ 

h(q), s2(4)hH, (VI 1 rl2), (4.14) 

Q 

where (VI 3 712) = VI ‘/2 E AQ. 
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The quantum operator f corresponding to a classical observable f is given by [50] 

.I.? = f^(s)v - iiAs(div {f)n, (4.15) 

where S = sn and div is defined with respect to n via CV r12 = (div V)q2. (Here, 2 denotes 
the Lie derivative.) However, only certain observables can be quantized. Specifically, the 
flow of cf must preserve the polarization and, additionally, we are interested in the case 
when tf is complete so that the operator f is essentially self-adjoint (on a suitable domain). 
For a vertical polarization of T* Q, the form of such an observable is 

f = u’(q)& + u(q), (4.16) 

where u E f (7’Q) and u E C”(Q) [50]. For a K?ihler polarization, tf must be a Killing 
vector [50]. We now consider a special case of the latter, namely, a Kahler polarization on a 
coadjoint orbit, 0, 2: H,\H. We can regard X E h as an element of Coo(c3,) c C”“(h*) 
via X(u) = (u, X) where u E 0, c h*. The Hamiltonian vector field for such an observable 
is ncO(X’), where xc0 in this context means the derived Lie algebra representation of the 
coadjoint action of H. Clearly, such a vector is a Killing vector since the metric on h* 
(induced from the one on h) is invariant under the coadjoint action of H. 

Now the symplectic leaf PO& = N# x H 0, is locally a product of [a subset of] the 
cotangent bundle T*Q and the coadjoint orbit 0,. Similarly, the polarization is locally 
a product of a vertical polarization and a K%hler polarization. Thus, using (4.16) and the 
comments above on the observables that can be quantized for a Kahler polarization, we see 
that, crucially, the general form of a classical observable which can be quantized to give a 
self-adjoint operator agrees with that given in (2.37). This agreement between the prediction, 
made in Section 2.4 via the use of a momentum map, of which classical observables should be 
quantized and the actual observables which can be quantized via the geometric quantization 
technique is striking and indeed most reassuring. 

The quantum operator corresponding to the observable given in (2.37) acts on sections of 
BK = B @ 60 and can be found using (4.15). However, there is a much more elegant way 
to present the quantum operators, namely as the Lie algebra representation derived from a 
representation of a Lie group. We now explain this approach. 

4.4. Polarized sections of the prequantum line bundle 

In order to make the connection with induced representations we must first represent the 
polarized sections of B in a more transparent manner. 

To begin with, consider the line bundle B’ = N XH~ 62 + N/H,. Now N/H, 2! 
N x H (H,\ H) 2 N x H 0, and we can represent sections of B’ by functions + : N x H -+ 
@ satisfying 

@(n, h’) = @(nh, h’h) Vh E H; 

$(n, h,h’) = xp(hpM(n, h’) Vh, E Hp. 
(4.17) 

From II/ we can define a function y : N -+ C via 

$(n, h) = $(nh-‘, e) = y(nhK’). (4.18) 
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It is easy to see that y (nhP) = xcc (hi’) y (n). Hence y satisfies (4.3) and thus 1,9 represents 
a section s of B’. We can pull s back to give a section of the prequantum line bundle B. The 
crucial point is how to realize the polarization condition on the $‘s. 

We can define a distribution on N XH 0, in a similar manner to that used in Section 
4.2. Specifically we take the trivial (zero) distribution on N and the normal Klhler polar- 
ization on H,\H 2: OP. The direct sum of the two distributions on N x 0, projects to a 
distribution on N x H 0,. The key point is that sections s of B’ which satisfy the “pseudo- 
polarization” condition, V2.s = 0 VX E Vp(N xH O,), pullback to polarized sections 
of B. Further, all polarized sections occur in this way. Everything becomes clearer if we 
use local coordinates. Namely, if (q”, pa] are local canonical coordinates for T*(N/H) 
and (z’ } are local (complex) coordinates for c?,, then polarized sections of B are of the 
form 4(q, z), i.e., holomorphic in z. Clearly these correspond directly with sections of B’ 
satisfying the pseudo-polarization condition. 

In terms of the functions $I : N x H -+ C, if we set 4,,(h) = +(n, h) and regard 
$J~ : H -+ C then the condition that @ will correspond to a polarized section of B is that & 
represents a polarized section of H x &, C (where (h, z) - (h,h, xv (h,)z), h, E H,) with 
respect to the Kahler polarization on HP \ H. Consequently, let 1-I, be the completion of the 
pre-Hilbert space of square-integrable polarized sections of H x H,, @. Note that sections 
of H x H, @ are represented by functions f#~ : H + @ satisfying 

Thus we are in the same setting as that detailed in Section 3.2 and so we have an irreducible 
unitary representation rrP of H on l-i,. 

We can then define E = N xH 7-1, (where (n, v) - (nh, rr,(h-‘)u)) and sections of 
this bundle can be represented by functions @ : N x H + C satisfying (4.17). Further, by 
construction, these functions correspond to polarized sections of B; hence we have proved: 

Theorem 4.3. There is a one-to-one correspondence between the polarized sections of the 
prequantum bundle B and the sections of E = N x H I$. 

One advantage of identifying sections of the prequantum bundle B with sections of 
N x H RFI, is that the latter bundle is closely related to induced representations as we shall 
see in the next section, but first we return to a matter alluded to at the end of Section 4.1. 

4.4.1. The generalized Aharanov-Bohm eflect 
Wu and Yang [51] gave a description of a generalized (i.e., the gauge group is non- 

Abelian) Aharanov-Bohm effect in terms of a nonintegrable phase factor. This is the 
“generalized phase change” of the wave function of the particle on being parallel transported 
between two points with respect to the connection which represents the gauge field. The 
term “generalized phase change” is used because the nonintegrable phase factor acts via 
an irreducible representation of the gauge group on the wave function of the particle. This 
representation is, in general, not one-dimensional. 
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The Aharanov-Bohm effect for the gauge group SU(2) has been studied [ 181 in terms 
of particles satisfying the Dirac equation, or its nonrelativistic limit, confirming the predic- 
tions of Wu and Yang. In the context of geometric quantization, the study of the generalized 
Aharanov-Bohm effect has been constrained to trying to classify the different “prequantiza- 
tions” of the “isospin” bundle N --f N / Hg [ 191. This was found only to be possible when the 
relevant bundles were trivial. We will now show, by considering the bundle E = N x H ‘H, 
rather than the line bundle associated to N + N/HP, how the Wu and Yang nonintegrable 
phase factor appears naturally in our approach together with the representation of the gauge 
group H via which the phase factor acts on the wave function of the particle. 

The bundle E = N XH ‘HP is an associated vector bundle of the principal bundle 
N + N/H. Now this latter bundle has a connection (Y and thus there is a corresponding 
covariant derivative V” on the sections of E. We will now show that this covariant derivative 
is equivalent to the one on the sections of the line bundle B’ = N x H,~ C. This means it is 
permissible to consider parallel transport in E rather than in B’. 

Let s be a section of E. We can represent s by s(q) = [n(q), @(n(q), h)]~ where 
r,k satisfies (4.17) and XN+N/H(~(~)) = q E Q = N/H. Now consider a curve a(r) in Q. 
We can choose n so that n(a(t)) = (T(t) is an arbitrary horizontal lift of a(t) with respect 
to the connection cr. Let X be the tangent to a(r) at t = 0. Then 

0;s = 
d 

S(O), -@((n(o(t)), h) 
dt 

(4.20) 

Now we saw earlier how sections of E could be identified with sections of B’. Here s(q) 
corresponds to a section s’ of B’ where, with y as defined in (4.18), 

S’(q’) = ]n(q)h-l, y(dq)h-')lH,, (4.21) 

andq’ = ?rN_,N,H,(n(q)h-‘). Let a’(t) = ITN+NIH,(~(~)~-‘), then 

d@‘(t)) = [a(&, )+(a(t))h-‘)]Hti. (4.22) 

It is easy to see that C(t)h-’ is a horizontal lift of o’(t) with respect to (Y’ since if A is 
the tangent vector to 6(t) (so a(A) = 0), then cx’(ph-~,A) = pr(Adh(a(A))) = 0. Thus. 
letting X’ be the tangent vector to a’(r) at f = 0, we have 

v$s’ = z(O)h-‘, (4.23) 

and the right-hand side corresponds to the section [6(O), (d/dt)+(n(a(t)), h)]r=o]~ of E 
in agreement with (4.20). 

Now let o(t) be a curve in Q with a(O) = qo and o(1) = 41. Denoting, as before, c?(t) 
to be the horizontal lift of a(t) to N with respect to the connection a, define h E H by 

6( 1) = &(0)/r. (4.24) 
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The general expression for h is 

(4.25) 

where P is a path-ordering operator along a(t) (which is necessary as H is, in general, no 
longer Abelian) and A is the local form on Q for a. This is the nonintegrable phase factor 
of Wu and Yang [51]. For a section s = [n, V]H of E, the change in u E ‘HH, on s being 
parallel transported around 0 is given by n,(h), i.e., 

v + n@ (Pexp(-f dadq“)) u. (4.26) 

When a(t) is closed, i.e., qo = 41, the “phase change” given in (4.26) is the generalized 
version of (4.8) and is the corresponding Aharanov-Bohm effect for arbitrary H. (Note that 
this result is in agreement with the case H = U( 1) considered in Section 4.1 since when H 
is Abelian rrcL = xcc.) 

4.5. Induced representations 

The theory of induced representations is well known for the case where one starts with 
a representation rr@ of H acting on ‘H, and induces, from np,, a representation rr@ for a 
Lie group G where H c G. The induced representation rr@ acts on sections of the bundle 
G x H 7& (e.g., see [47,3]). Now a generalization of this type of induced representation, due 
to Moscovici [38], exists for the case in hand of the bundle N. The starting point is the bundle 
E = N x H 7-1,, given in the previous section, with sections of E identified with functions 
9 : N + Xt, satisfying ly(nh) = n,(h-')ly (n) for all h E H. The representation rp of a 
group G’ which acts on the left on N and commutes with the right action of H is given by 

(n~“(g>~)(n) = ‘&-‘n), g E G’. (4.27) 

We are naturally interested in taking G’ = Aut N. (Note this is not a special case of 
[38] since it was assumed there that G’ was locally compact.) We expect that, for A E 
fZ(Aut N), the action given by dnw(A) corresponds to the observable .fF(A, 0) where 
jp : C(Aut N KC”(Q)) + C”(Po,) is defined just before (2.35) and drr” is defined, 
via (1.2), on the domain of compactly supported cross-sections of the vector bundle E. 
Before showing that this is the case, we remark that, as we will see, the group C”(Q) 
can be incorporated into rcfi in an obvious way to give a unitary representation of Aut 
N K C”( Q). This representation is the same as that used by Landsman [30] except here the 
choice of such a representation is now fully justified in that we show that the derived Lie 
algebra representation corresponds to specific classical observables via the map ju-. Also 
we note that this representation of Aut N K C”( Q) essentially appears in Isham [20, Ch. 
5.21 under the guise of lifted group actions. Isham starts with a group action on Q and then 
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considers possible lifts of this to an automorphism of N. We have avoided the use of such 
lifted actions by starting with the group Aut N to begin with. 

The action of Aut N on a function P given via (4.27) corresponds to an action on the 
sections of the bundle B’ = N x H,, C. Specifically these sections of B’ are represented by 
functions 1/ : N -+ C satisfying y(nh,) = ~~(h;‘)y(n) where h, E HF. The action rr” 
on these sections is then (np($)y)(n) = ~(4~‘n). In terms of a section s of B’ we have 

(j+(ti)s)(q’) = &(&;‘q’)> q’ E N/H,. (4.28) 

Here, $0 denotes the diffeomorphism defined on N/H, in the same fashion as in (2.29). 
Returning to the convention for projection maps of bundles used in Section 2.3, sections 
s then pullback to give sections j*s of the prequantum bundle B = N# XH,, C, where 
j = rr,v/~,, 3 1. Let rr[ denote the corresponding action of rr/* on these sections, i.e., 
rr((@)(j*.r) = j*(nCL(4)s).Usingtherealization N# = {(n, p): n E N, p E T:N_C)C,l)Q] 

and denoting an element of N#/HW by ([n]H,, pnujH,, p,)), we find 

Here r B denotes the left action of 4 on elements of B = N# x H@ C via r: [/In, ;]H,, = 

[sc#,o)Bn, z]H,, with /3,, E N# c T*N. The vector field V, generated by the infinitesimal 
action of A E C(Aut N) on B via tB, ’ mtrinsically characterizes the classical observable 
to which the representation rr[ corresponds. We write V = A’, where the superscript B 
denotes the space on which Aut N is acting. Recall, that in Section 3.1, we gave the relation 
between an observable, its corresponding vector field on B and the resulting prequantum 
operator. (The term prequantum is used to emphasize that these operators are regarded as 
acting on general sections of B rather than the polarized ones.) We intend to use this relation 
to show: 

Theorem 4.4. Theprequantum operator corresponding to the observable jp (A .O) is given 
byhdx;(A). 

To begin with we return to (4.29) and note that we can write this as 

r~((n~(~-')(j*s))([nlH,, PnN,p(n))) = (~*~)(~~~.O~([~lH~~ PnN,&))). (4.30) 

This now corresponds to (3.4) since <jPCA o) - - APhi. It now remains to show that the vector 

field A B corresponds to the observable jP (A, 0). The verification of this result is technical 
and we first present two lemmas. 

Lemma 4.5. 
(9 ~B+P,+ B = G,(A,O)' 

(ii) Fz(6, AB) = A(8, AB) = -(&(A, 0)) OTTB+P~. 

(4.31) 

(4.32) 

ProojI Now ~IB_+P~*,+A~ is just the vector field generated by A acting on Pp. Hence, from 
the properties of the momentum map j,, it is evident that (4.31) holds. 
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To verify (4.32), let b : U c N/H, += N denote a section of the bundle N -+ N/H@. 
Then the section j*b gives a local trivialization t of B via t(q’, z) = [(s*b)(q’), z]~,. In 
this trivialization the connection one-form is given by 

&j = A-In* B+P,O - ir-I*%, (4.33) 
2 

where 0 is the local potential one-form of the connection given in (2.24). From the definition 
of 00 in (2.9), and recalling that elements (n, p) of N# correspond to elements in the 
annihilator of the vertical bundle of TN, we have 

(n* B-P,, l*oo, AB),~n.,j,z,H, = b&~, A’%. (4.34) 

The remaining part of 0, as given in (2.24), consists of an (Ye term. Now 

(n;-rpJ*b*+ AB),(n.g).+,V = (n;,,v,Q*+, A”),; (4.35) 

further, 

(4.36) 

where rl is the local trivialization of N x ~~ @ via 71 (q, z) = [b(q), z]~, . To complete the 
verification of (4.32) we use the following result. 

Lemma 4.6. 

(& A”),n,+, = (&, AB’),n,i,H, = A-’ (Q, A’% (4.37) 

where kW = A-ITT* . N+N,H~b*% - 171 -I* (dz/z) is the connection one-form on B’ and 6@ 
is its complex conjugate. 

ProoJ This can be readily checked by considering, for example, the curve b(q(t))ecA’ in 
N and the corresponding curve [b(q(t))ecA’, z]~, in B’; here A’ E h,. 0 

Thus, it finally remains to calculate (oP, AN),, . We have 

(Q A%(,)h = (n,,(h) .P, o,c&@)L (4.38) 

where s is the section of the bundle N + N/H used at the end of Section 2.4. Combining 
this equation with (4.34) we finally obtain 

A(& V)l(,(,)h,,),,lH, = -(n,$+g~, A%(,) - (n,,(h) .CL, osc4,(AN)). (4.39) 

Note that the right-hand side is in fact a function on PW z PO@ = N# x H 0,. Now for 

Us(q), ~IH E N&, x H c?, we can Write. this as [pi_, j!?s(q), C_L]H E N,#(,)h x H { @} where 
h is such that n,,(h) . F = v. So we can write 

(4.40) 
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using (2.36). Clearly the same expression is obtained for A (0, V) and thus this completes 
the proof of Lemma 4.5. 0 

By considering (4.30), (3.5) and Lemma 4.5 we see that Theorem 4.4 has been proved. 
It finally remains to incorporate C”(Q) into the representation np defined in (4.28). For 

(4, f) E Aut NKC~(Q), following [30] we put 

(+(G, f)s)(q’) = exp(-ifi-‘f(nhi,H,,~(q’))J~s(~o’q’). (4.4 1) 

which gives a [left] representation of Aut N KC”(Q) on the sections of B’. Note that, in 
terms of the functions P used in (4.27), the representation JC~ is given by 

(~~(4, f)P)(n) = exp(-ifi-‘fo~N--*Q(n)}~I/(~~‘n). (4.42) 

Concentrating on the case XP (0, f) we claim: 

Theorem 4.7. Theprequantum operator corresponding to the observable .fw (0, f’) is given 
by h dx; (0. f). 

Identifying the Lie algebra of C”( Q) with the Lie group we have, in the notation of (3.4), 

P~M%JH, = [Bn -tjy&dfh,,. Now let j, = ~((0. -t df), i.e., in a local trivialization 
of B 

(hj*.~)([nlH,, p) = ([nlffu, P, exp{ih-‘tfo~N--tC)(n)lllr([nlH,)). (4.43) 

where s is a section determined locally by I& E C”(U c N/H,), i.e., (j*s)([n]H,, . p) = 

([n]H,, , p, @([n]~,,)). It follows that the corresponding & is given by 

&((j*s)([nh,,, PI) = ([nlff,,, p - t df, exp(-ihp’tf ?.TTN+Q(n)}$([nlH,,)). 

(4.44) 

Regarding, as before, & as the flow of the vector field V = tB (f) (i.e., the vector field on 
B generated by the action of f via t) we now only need to prove: 

Lemma 4.8. 

(9 xe+P,*P(f) = tj,@J,; 

(ii) h(O, CB(f)) = A(& {B(f)) = --foJrB-t@ 

(4.43 

(4.46) 

Proo$ AS in Lemma 4.5, (4.45) follows from the properties of the momentum map j/1. 
Also it is easy to see from (2.9) that (xi-P z*@. cB(f)) = 0. Thus it just remains to 

calculate (ng, P,, J ‘*b*cxw, cE(f)). Using (4.;3) we obtain 

A@, P?f)),~n,p),ilH, = h(6, <B(f))[(n,p).L]H, = -f 3Jrh’+Q(n)T (4.47) 

as required by (4.46). 0 
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In the same manner as Theorem 4.4 this completes the proof of Theorem 4.7. Note that 

(A d$(O, f)@)(s’) = f(nP,,+Q(d))+h’) as expected. 

So far we have found operators which act on the sections of B. We must now restrict 
these to act on polarized sections of B. Recall that there is a one-to-one correspondence 
between the polarized sections of B and the sections of E = N XH XFI,. Thus, we see that 
the action of ~0” on the polarized sections is equivalent to the action of np on the sections 
of E. So, to summarize, we can put our results for Aut N and C”(Q) together to obtain our 
key result: the prequantum operator corresponding to the classical observable j@ (A, f) is 
given by A dnp(A, f). However, this is not quite the complete picture because so far we 
have considered the quantum operators to be acting on sections of B rather than sections of 
BK = B @ SD. We address this point in the next section. 

4.6. Unitary representations 

As it stands, the representation 17 k fails to be unitary unless there exists a measure on N 
which is invariant under Aut N. This can be overcome in a standard way using the Radon- 
Nikodym derivative, e.g., [20, Ch. 5.21. Let n be an H-invariant measure on N, which in 
turn determines a measure v on Q. Then we define the representation np by replacing (4.42) 
with 

This then gives a unitary representation of Aut N KC”(Q). The addition of the square-root 
term corresponds to the replacement of B by BK in Section 4.3 and the fixing of a choice 
of n such that qq = dv. The inner product is (cf. 4.14) 

(‘& @) = I du(~wQ(n)> (q(n), *‘(n)ht,, (4.49) 

Q 

and we restrict our attention to smooth functions P that have compact support. 
Further the representation rr@ is, in general, irreducible. To see this we first recall that there 

is a one-to-one correspondence between the sections of E and the functions y : N + C 
which satisfy (4.3) and the “pseudo-polarization” condition detailed in Section 4.4. In terms 
of the y’s we have 

For a general Lie group G, the representation J? of G rx C”(N) acting on smooth functions 
$ : N --f C, given by 

(4.5 1) 

is irreducible [20] provided N does not decompose into a disjoint union of two G-invariant 
subsets both of which have positive n-measure. (This situation can be overcome if 9 is 
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required to be G-ergodic.) Returning to our representation JC~ we see that it is closely 
related to ir except that firstly we are considering a subspace of C”(N, C), i.e., the functions 
y satisfying the conditions noted above. This does not alter the irreducibility of Er . Secondly, 
the function f in (4.50) is lifted to one on N which means that it cannot vary along the fibres 
of N + N/H. However, this restriction merely ensures that the action of irp is to create 
a function which satisfies the conditions on the y’s. Hence rrlL is irreducible, provided N 
does not decompose into a disjoint union of two Aut N invariant subsets. 

Landsman [30] has given an explicit form of the representation rrp in terms of functions 
qa : U, c Q + RFI,. Specifically, cover Q with open sets ( CJu ) and denote local smooth 
sections of N by So : U, + N such that for 9 E U, f’ Up, .vp(q) = s, (q)g,p(q) where 
g,p : r/, n Up + H is the transition function for the two coordinate patches U, and Up. 
An element of 3-Ib is represented by a collection ( I)~) of smooth functions IJ?~ : Uol --f W,, . 
which are related on U, rl Up by 

@‘a(4) = n~(&B(y))lCI#‘(q). 

The action of np on these functions is given by 

(4.52) 

x e-i*-‘~‘q’*,((hp[~-‘(s,(q))l)-‘)lj/p(~-’q). (4.53) 

where ha is the element of H satisfying ~~($-‘~)hg = &’ (s,(q)). Here it is assumed that 
q E U, and @lq E Up. Landsman [30] also gives a formula for the derived representation 
drrw, which in our notation is 

h(dr’(A, f)lCIU)(q) = f(q) -ih[vnN_,*A + $div(~,v+~*A)(q)l 

+ dn,(a.sm(q)(A)) 1 @a(q). (4.54) 

Here cr is the connection on N --+ Q and V is the corresponding covariant derivative via the 
representation x/L of H on ‘I&. Also note that the div term agrees with that in (4.15). As noted 
by Landsman [30] the operator dn”, restricted to C(Aut N D( C,?( Q)) (where C,?(Q) is the 
subspace of smooth functions on Q with compact support), is defined and essentially self- 
adjoint on the domain of compactly supported cross-sections of the bundle E = N x H 7YFt,, 
Further, the right-hand side of (4.54) is actually independent of the connection used. The 
motivation for writing (4.54) in this manner is that the third term on the right-hand side 
is the generalization of the Poincare term in the angular momentum of a charged particle 
moving in the field of a magnetic monopole [29]; if A is a symmetry of the dynamics then 
this term is the contribution of the external gauge field to the conserved operator dn I* (A ~ 0). 

We have now proved our main result: 

Theorem 4.9. For the constrained mechanical system whose reduced phase space is P,‘, 
the quantum operator corresponding to the classical observable j, (A, ,f) is given by 
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A drop (A, f) and acts on compactly supported cross-sections of the bundle E = N x H I$. 
In terms of the quantizing map Qh, this is written as 

Qh(J,(A, f)) = fi d+‘L(At f>. (4.55) 

Note that as rrp is, in general, irreducible we have satisfied the irreducibility requirements 
discussed in Section 1. 

We now turn to the problem of finding the Hamiltonian for the quantum system. Unfor- 
tunately the classical Hamiltonian is not in the subclass of observables that we can quantize 
using Qh; indeed this is a generic problem with geometric quantization when the Wamil- 
tonian is not linear in momentum. However, Landsman [30] has shown that the quantum 
Hamiltonian Hh is given by the gauge-covariant Laplacian on E = N x H tiFI,. Specifically, 
Hj, determines the time-evolution of an operator i = Qh (.&(A, f)) via 

(4.56) 

and Hh, which acts on sections of E, is given by 

&j = -+12V.V+V 2 0. (4.57) 

Here we have included the potential Vo, which was defined at the end of Section 2.4, and 
we note that the gauge-covariant Laplacian is defined with respect to the connection a. 

Locally, we can use (h’, . . . , hdH, qdH+‘, . . . , qdN) as coordinates on N, where 

(9 ..? dH+l qdN) are coordinates on Q and (h' , . . . , hdH) are coordinates on the fibre H. 
We can’motivate Hh as the Hamiltonian if the coordinates are chosen such that cr(3/L3q’y) = 
0 and dw = d”q. The latter condition means that det 9 = 1, where g is the metric on Q. In 
the notation of (2.39) we then find that Hh coincides with HA, where 

Ht: = -;h2Qh(&bL ONl”pQd&(Ag, 0)) + .&JO. Vol. (4.58) 

Note that !‘“Qh(&(A,, O))Qh(jP(AJ, 0)) = O’J dx,(TI) drr,(TJ) is a Casimir operator 
for H and, as the representation rrw is irreducible, this is a constant which can be omitted from 
the Hamiltonian. Hence HL can be considered to be the quantum operator corresponding 
to HuP given in (2.39). To see that Hh agrees with HA it is easier to use the representation 
rrp as defined on functions P used in (4.27). Then the action of dn@ is given by [30] 

A(dx@(A, O)@)(n) = -iA ((A + &div A) P) (n). (4.59) 

Thus, noting that div(8/8qU) = 0, we find 

whilst, up to a constant, Hh acting on the functions P is given by -iA2A~p, where ALP 
is the Laplace-Beltrami operator. Thus, in this choice of coordinate system, Hh agrees 
with HA. 
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4.7. Homogeneous spaces 

When the bundle N is a finite-dimensional Lie group G (with H c G) the configuration 
space Q = G/H is homogeneous. Isham [20] has considered quantization on such config- 
uration spaces and in this section we relate our work to his. In particular we can explain 
two unresolved features of Isham’s method. The first is the appearance of irzequivalent 

quantizafions, i.e., the discovery of many different quantum schemes resulting from the 
same classical system. The second is the presence of quantizations which appear to be un- 
related to the original system. We find that the geometric quantization approach shows that 
the inequivalent quantizations of Isham’s correspond to slightly different classical systems. 
and also that the seemingly unrelated quantizations of Isham’s are indeed quantizations 
resulting from a completely different physical system. Note that the different quantizations 
Isham finds are unrelated to whether or not the configuration space is multiply connected. 
We conclude the section with a worked example for the case G = SU(2) and H = U( 1). 
This gives the homogeneous configuration space S’. 

Let V be a vector space which carries an almost faithful representation of G and for which 
there is a G-orbit in V that is diffeomorphic to G/H. Isham [20] argues that quantization 
corresponds to representations of the semi-direct product group G = G K V*. Crucially 
lsham considers G as a subgroup of Diff QKC?( Q)/R (where IF! denotes the functions 
constant on Q) and the phase space of the system to be T*Q. A momentum map for the 
action of S on T* Q is found and indeed corresponds to the restriction of the momentum 
map j,,=o of Section 2.4 to G c Aut N DC C”( Q). Isham quantizes the system by finding 
irreducible unitary representations of G (via Mackey theory) and using the momentum map 
to match observables on T*Q with the generators of the representations of G. 

We can split the irreducible unitary representations of s into two classes, those which 
arise from consideration of a G-orbit 63 c V where 0 zz G/H (the first class) and those 
from a G-orbit (9’ c V where 69 2 G/H’ with H y.5 H’ (the second class). We can now 
compare Isham’s results to our own. Specifically the representations ~1’ we tind are the 
same as those in Isham’s first class. (Here we are restricting r/i to S.) Crucially, however. 
each of our representations corresponds, via p, to a different symplectic leaf in (T*G)/ H. 
Further, each symplectic leaf has a different momentum map and thus each of the different 
representations corresponds to a slightly different physical system. In terms of the quantizing 
map Qh, Isham considers the phase space G#/ H 2: T* Q with 

Qfi(J,,=o(A. u)) = h dxP(A. u). (4.61) 

where (A, u) E C(G)* z g x V*. Note that it is not clear which representation KP is to be 
chosen on the right-hand side. Whereas we have the phase space G# x H 0, with 

Qh(J,,(A, u)) = Ad+‘(A, u). (4.62) 

It is now clear that different representations of G correspond to different physical sys- 
tems. In fact, for a particle moving in a Yang-Mills field, the different representations of 
s correspond to the different possible charges that the particle could have. 
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The representations of 6 in Isham’s second class clearly correspond to the quantizations of 
constrained systems which have H’ as the symmetry (gauge) group. In terms of a particle in 
a Yang-Mills field, these representations correspond to a particle on the configuration space 
G/H’ where the internal charge couples to the gauge group H’. Thus, they are unrelated to 
the original system. 

4.7. I. The canonical connection 
There is a natural choice for the metric on G; specifically, as H is compact, h is reductive 

in g and a positive definite inner product (( , )) exists on g which is invariant by ;TTad( H) (e.g., 
[24]). Thus, by defining mto be the orthogonal complement to h, with respect to this inner 
product, we have that g = h @ m and [h, m] c m, i.e., the decomposition is reductive. We 
can use this inner product on g to define one on T,G via ((X, Y))g =((k8-l*X, A,-I,Y)), 
thus defining a metric on G. We saw in Section 2.2 that a choice of a metric on N was 
equivalent to choosing a connection on N + N/H. In this section we will explicitly 
identify this connection. 

Let gab = ((T,, Tb)) where {z} is a basis for g . We can write the Hamiltonian as 

Ho(g, P) = ;gabpapb + v(g), (4.63) 

where gabgb, = 8: and the {pi) are coordinates on Tiq in the left trivialization (2.12). 
The corresponding Legendre transformation IFL is (g, vJ) + (g, pj) where pj = CJjav’ 
and (g, v) E G x g represents hR*v E T,G. 

We denote the momentum map for the right action of H on T*G by JH. From (2.10) we 
find for, X E h, 

(JHk, PI, w = (P, w. (4.64) 

So JA (g, p) = p’ where I = 1, . . . , dH. From the definition of 0 (2.16) we have O(g)lJ = 
g/J. To calculate a’(g, v), note that the choice of a reductive decomposition means that 
g’fl = 0, for ,6 = dH + 1, . . . , dc. Thus, we readily find 

a,‘(g, v) = VI. (4.65) 

We see that a! is the canonical connection on G --+ G/H. The canonical connection w for 
this bundle is defined to be the h component of the canonical (Maurer-Carter) one-form on 
G with respect to the decomposition g = h @ m (e.g., see [23]). Explicitly, w = TI @ 8’, 
where (0’) are left invariant one-forms as defined in Section 2.1 using a basis of g* which 
is dual to the basis (c} of g, i.e., (da, Tb) = 8;. If (g, U)L E G x g represents the point 
hg*v E T,G then we have w(+v) = T~v’,i.e., WI = v’, in agreement with (4.65). The 
one-form (Ye on G is then just 

cY@ = ,LL#‘. (4.66) 

It is easy to see that the trivialization of T*G 2: G# x h* induced by (2.26) corresponds 
to the left trivialization of T*G in (2.12) where G# 2: G x m*. This allows us to rewrite 
(2.32) as 
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(Jk, ,v). (X, u>) = (Jk&). p, X) + b, fl(gb). (4.67) 

where (X, u) E C(G) 2 g x V* and 0 is the representation of G on V. We regard J as 
a momentum map for the left action of G on T’G. In passing we note that as 6 is finite 
dimensional, C(G)* is foliated by symplectic leaves which are the coadjoint orbits. If the 
explicit form for the coadjoint action of G on C(G)* is considered (e.g., see [34]) it is 
easy to see that the coadjoint orbit IT,,(~). ( u, a), where (u, a) E g* x V, is contained 
in (g*, a(G which is exactly J(T*G). Hence the symplectic leaves in J(T*G) are 
coadjoint orbits. Thus, by the arguments of Section 2.4, j, is a symplectic diffeomorphism 
which maps the symplectic leaf G XH (m* x 0,) to the symplectic leaf n,,(G) (II, II) 
where v E g* such that ut h = p E h*. Explicitly, 

J,,[& PIH = (h&)~ p, a(g E ma* 2: g* x v, (4.68) 

where [g, p]~ E G x H (m* x 0,). This gives an elegant alternative proof of a previously 
known result [34]. 

4.7.2. The cute G = SU(2), H = U(1) 
We can parametrize SU(2) using the Euler angles (@,19. x ): 

g(@, 0. x) = e-4~3e-Q~~2e-X~~3 (4.69) 

where aj = iicrj, the {aj) are the Pauli spin matrices, 0 ( H 5 ~7, 0 < 4 ( 2rr and 
0 I x 5 4n. We regard H = U( 1) as the subgroup 

H = (~(0.0, x): 0 5 x 5 4rr). (4.70) 

There is a standard homomorphism (e.g., see [8]) a : SU(2) + SO(3) given by (Y(u);~ = 
&tr(ajuakK’). In the parametrization above this gives 

G(@, 0, x) = (~(g(4,8, x)) = e-@‘A3e-BA2e-XA3. (4.7 1) 

Here [A; ]jk = -Eijk and (4.7 1) is the standard Euler angle parametrization of SO(3). The 
subgroup U( 1) c SU(2) is mapped by a to the subgroup G(O.0. x) 2 SO(2) whilst the 
kernel of (II is just fl c U(1). Hence we can see that (II drops to a map on the quotient 
spaces SU(2)/U(I) + SO(3)/SO(2). This is readily observed to be a diffeomorphism; 
thus SU(2)/U( I) z S2. We can use (Y to give a representation of SU(2) on R’. Clearly the 
orbits of SU(2) in R3 are then spheres (or just the origin). Thus by choosing G = SU(2), 
H = U( 1) and V = R’ so that G = SU(2) K[W~* we satisfy Isham’s requirements for G. 
We use the measure dv = sin 0 dQ A d6, on S2. Note that this is G-invariant. 

It is a standard result that the derived map (Y’ : su(2) + SO(~) is an isomorphism with 
a’(~;) = A,, e.g., see [9]. Further, the adjoint action nad of SO(3) on SO(~) 2 IL!’ is the 
usual one, i.e., using {Ai : i = 1,2,3) as a basis for SO(~) then if p E R” 2 SO(~) and 
x E SO(3) then r&(g) . p = g . p, e.g., see [ 11. Similarly regarding so@)* 2 R”, we have 
Jr,,(g) . p = g . p. We can now write down an explicit expression for (4.68). We have 

&Is. I)lH = (a(R). P? au(g) ao), (4.72) 
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where we have used the fact that cr’(nO(g). A) = n,,(cr(g)) . cd(A). Here au = (0, 0, l)r 
so, as is standard, we are taking S2 to have unit radius. 

We can use (4.54) to find explicit expressions for the derived representation dnp where 
we are considering rrp as representation for 6 c Aut N KC”(Q). Of course, however, 
we must first find the representation ny of H which corresponds to the coadjoint orbit 
0, c h*. Since H is Abelian the coadjoint orbits are just single points; 0, = (I}. Finding 
the representation of H which corresponds to the orbit 0, is a trivial example of the standard 
problem discussed in Section 3.2, since H,, the isotropy group of H, is just H. Writing X, 
for the homomorphism xP of Section 3.2, then, if the elements of HP are written as e-x@, 
0 5 x 5 4x, we have from (4.5) 

Xw(e-xa3) = eih-‘Px , 2nEZ, (4.73) 

where we are regarding h* 2 R. Requiring X, to be a single-valued function on H,, we 
see that the integrality condition is 

p = nh, 2n E Z. (4.74) 

The sections of the prequantum line bundle B + 0, are identified with functions 1c/ : 
H + C such that 

@(hh’) = X(h)+@‘), h, h’ E H, (4.75) 

and we obtain a representation rrlr of H on the sections of B by pulling back the e’s under 
right translation. In this trivial case we can, as HP = H, identify each 1c/ with some z E C 
via $(e) = z so (rrP((h)$)(h’) = @(h’h) = X(h)@(h’). Hence 

nlL (e-Xu3) = einx . (4.76) 

Thus, as expected, rrw is an irreducible unitary representation of H. In this simple case the 
process of finding a polarization does not arise since 0, is just a single point. 

We now turn to finding the induced representation n @. We can cover S2 with the standard 
coordinate patches 

MN={(~,e)ES2:0Ie<~n+E,Oi~I2n}; (4.77) 

Ms=((f$,@ ES2: +E <f3 12Jr,OIf#Ji2X), (4.78) 

where in > E > 0 and (#,0) are the standard spherical polar angles. Following Landsman 
[28], we choose continuous sections SN/S : MN/S -+ SU(2), namely 

sN(dJ, 0) = g(@, 0, -d’); (4.79) 

ss(@, 0) = 8(4,0, @), (4.80) 

so that SN is continuous at the North pole (0 = 0) while ss is at the South pole (0 = n). 
On the overlap region MN fl MS 

sS(C$, 0) = SN(@, 6+-2’a3. (4.81) 
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Before calculating the explicit form for the induced representations we first find an expres- 
sion for the classical observables in local coordinates on each coordinate patch. Note that 
the symplectic leaf PO,, = G x H (m* $ (p}) 2: G x H m*. 

A section s of G/H --f G determines a trivialization of G XH m* 2 T*(G/H) via 

[s(q)h. PIH = [s(q), h . PIH 
-+(q,h.p)cG/Hxm* 

(4.82) 

(4.83) 

as every g E G has a unique factorization g = s(q)h. So h . p represents a one-form 
ptf?’ + p28* = p# d4 + pe d6’ at q = q(@, 0). Thus we need to find [@iN,S(4,B)]. Starting 
with s,v (4, e), we find that the local form for the left-invariant one-forms is 

where H’(4) = G(0, 0,4). Identifying p = (ii) with ( Ps~~n~ E [w3 we have, 

H’(W) . p = p’, where p’ = (-‘,,i”“). 

Given (p@(q), p@(q)) we find the corresponding element of G XH m*, using either SN 
or ss, is [g(@, 8,0), p’]~. We can now give (4.72) explicitly; setting pi = CL so we are 
identifying G x H m* with G x H (m* x (,u}), we have 

&(Pe(q), Pb(4)) 

= (G($, 60) . p’, G(@,h 0) . ao> 

-p+c0s~c0te-pesin~+psin8cos~ 
= -p~sin$cot8+p~cos~+~sinesinf$ 

p$ + pc0se 

(4.85) 

Returning to the actual representations of 6 themselves, we really require the derived 
representations. Let (u’) be the canonical basis for [w3. Using (4.54) and setting (i’ = 
t? drr@(O, u’), immediately we find for $rNIS E L*(kfNIS, C), 

(4.86) 

where q(#, 0) = G(@, 8,O) . a~. Finding the expression dn’*(X, 0) requires some calcu- 
lation. However, Landsman [28] has already done this for the very similar case of G = 
SO(~)KIW~ so we will not give the details. Recalling that p = nh, we find for il = 
dnl*(ai, 0) 
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(i’l’~IN’%~. 69 = K a a 
icos@cote- +isin@% -n 

w 
S(l ~COS8) 

x eNIS 1 (430); (4.87) 

(&N’Sw, e> = K isin@cotl)$ - icos@$ -ns(1 ~cos0) 
> 

x +NIS 
1 

me); (4.88) 

(4.89) 

The term div in (4.54) vanishes because if the vector field X is complete, div X = 0 by 
the G-invariance of u (e.g., see [l]). Also note that in the region the coordinate systems 
overlap, QN and es are related by (4.52), namely 

@(#, e) = e2i”b$N(@, 0). (4.90) 

The action of the generators of SU(2), detailed above, agree with those given by Landsman 
[28] for SO(3) except that here half-integer values of n are allowed, which reflects the fact 
that we are using SU(2) rather than SO(3). 

We can now give the quantization explicitly. Using (4.85) together with (4.55), we have 

-p~sin@cot8+pecos@+psin8sini$ -+ Ai’;, 

(4.91) 

sinecos4 + $‘, 

sine sin4 + G*, 

where the action of (4’) and {ii) on the respective coordinate patches is given in (4.86) and 
(4.87) - (4.89). Note that this is the quantization obtained when nh is restricted to G and thus 
(4.9 1) does not give the quantum operators for all the observables that could be quantized. It 
is, of course, straightforward to calculate from (4.54) the quantum operators corresponding 
to these other observables but, for simplicity, we have just restricted ourselves to the ones 
corresponding to G via jP. 
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5. Conclusion 

We have now achieved our aim of matching a preferred class of observables with their 
quantum operator counterparts in a way which satisfies the quantum conditions (Qi)-(Qiii) 
given in Section 1, i.e., Eq. (4.55). Although having used the method of geometric quan- 
tization we have managed to cast our results for the quantum operators in the language 
of representations rather than the form, given in (3.2) which is usually generated by the 
geometric quantization approach. Thus, our results can be considered to be a generalization 
of Isham’s [20] approach (modijed in view of the results of Section 4.7) in that, firstly, they 
are applicable in the case of a nonhomogeneous configuration space; and secondly, we now 
have a representation of Aut N KC”(Q) rather than G K V* c Aut N K P(Q) and we 
thus have a correspondingly larger class of physical observables that can be quantized. 

Finally, for a particle in an external Yang-Mills field, the role of the connection cr is now 
transparent. Note that we can regard (Y to be given by the classical Hamiltonian Ho on T* N 
since Ho implicitly gives the metric on N which then determines (Y. Firstly, the obvious 
role of the connection is in the quantum Hamiltonian Hh. Turning to the quantizing map 
Qh, however, we see that this map is independent of the connection. This follows since. 
for the symplectic leaves of (T*N)/H, we could, given 0, E h*, write the corresponding 
symplectic leaf as (J-’ (C?,))/H which is defined without recourse to the connection. This 
is the reduced phase space of the particle. Similarly both the map jP and the derived repre- 
sentation dnp are defined without regard to the connection. (Recall that right-hand side of 
(4.54) is independent of the connection used.) Thus, as claimed, the quantizing map is inde- 
pendent of the connection and, in fact, there is only one set of quantum operators. labelled 
by C(Aut N D( C”( Q)). Where the connection comes in, is that it allows the “external” and 
“internal” classical variables of the particle to be explicitly identified, i.e., it determines the 
local form of jP given in (2.37) where the (q’, pg) are considered as “external” variables 
and u represents the “internal” variables. Thus, the connection determines the way in which 
the quantum operators are interpreted at a physical level. 
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